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ABSTRACT

The goal of anomalous change detection (ACD) is to identify what unusual changes have occurred in a scene,
based on two images of the scene taken at different times and under different conditions. The actual anomalous
changes need to be distinguished from the incidental differences that occur throughout the imagery, and one of
the most common and confounding of these incidental differences is due to the misregistration of the images,
due to limitations of the registration pre-processing applied to the image pair.

We propose a general method to compensate for residual misregistration in any ACD algorithm which con-
structs an estimate of the degree of “anomalousness” for every pixel in the image pair. The method computes
a modified misregistration-insensitive anomalousness by making local re-registration adjustments to minimize
the local anomalousness. In this paper we describe a symmetrized version of our initial algorithm, and find
significant performance improvements in the anomalous change detection ROC curves for a number of real and
synthetic data sets.
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1. INTRODUCTION

Two images of the same scene, taken at different times and under different conditions, will typically exhibit a
wide variety of differences. But those differences are not necessarily very interesting. In fact, what an image
analyst often seeks is the small change that is hidden among the clutter of pervasive differences. This is the task
of anomalous change detection (ACD). By distinguishing those changes that are unusual from the differences that
occur pervasively throughout the image, the ACD algorithm can help identify potentially interesting changes
in the scene. Whether those changes truly are interesting or meaningful is beyond the scope of the problem
statement — as an operational issue, that judgement is generally left for a human analyst to decide. What
automated ACD offers is a way to cull through a massive archive of imagery, and narrow down the changes that
the analyst might want to examine. (See Ref. [1] for an overview.)

One of the most confounding sources of “uninteresting” differences is misregistration of the images. While it
is important to align the images as precisely as possible in the first place, so that corresponding pixels in the two
images correspond to the same position in the scene, one has to assume that some residual misregistration will
inevitably remain. Since the effects of misregistration are pervasive over the whole scene, ACD already provides
some robustness to misregistration, at least in principle. But more active compensation is possible, and in an
earlier paper, we proposed a misregistration compensation algorithm.? In this paper, we extend those efforts,
and demonstrate the ability of this extension to further reduce the rate of false alarms caused by the residual
misregistration that is inevitable between pairs of images.

Algorithms that have been proposed for ACD include the chronochrome,? neural net prediction,* covariance

equalization,® multivariate alteration detection,® and a machine learning framework” which as led to a number
of variations that optimize for different situations, such as subpixel anomalies® or fat-tailed data distributions.” 10
In all of these pixel-based algorithms, a scalar “anomalousness” value is assigned to every pixel in the image, and
those pixels with the highest anomalousness value are the top candidates for the locations of anomalous change.
Our approach for misregistration compensation can be applied to any of these pixel-based ACD algorithms, but
we will concentrate on the hyperbolic anomalous change detector.”
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1.1. Hyperbolic anomalous change detection

Let x € R% be a pixel value in the first image, x, and y € R% correspond to the associated pixel value in the
second image, v. In general, we will write A(x,y) as as our measure of anomalousness.

The Hyperbolic Anomalous Change Detector (HACD) is motivated by modelling the underlying probability
distribution P(x,y) for values x and y associated with corresponding pixels in an image. Write P,(x) =
J P(x,y)dy as the projection of P(x,y) onto the x subspace; this is the distribution of pixel values in x
alone. One can similarly write Py(y) = [ P(x,y)dx. Following the framework introduced in Ref. [7], we can
characterize the anomalous changes as those with high values of mutual information. That is,

A'(x,y) = log Py (x) + log P,(y) — log P(x,y). (1)

When the data distribution is Gaussian, these probability densities can be described in terms of the covariance
and cross-covariance matrices of the data. Subtract the mean from both images, so that (x) = 0 and (y) = 0;
then write

X = <XXT> Y = <ny> C = <yxT>.

Up to unimportant additive and multiplicative constants, the anomalousness in Eq. (1), in this Gaussian case,
becomes a quadratic expression:

A y) = [ <7 yT]Q[j], @)

where the coefficient matrix @ is given by

Q:[C Y 0 v )

For HACD, the matrix @ has negative as well as positive eigenvalues, and the boundaries of constant A(x,y)
are hyperbolas in (x,y) space. Another consequence of these negative eigenvalues is that, in contrast most other
pixel-based ACD algorithms, the anomalousness measure A(x,y) for HACD can be positive or negative. The
largest (i.e., most positive) anomalousness values correspond to the most anomalous changes.
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2. MINIMUM ANOMALOUSNESS REGISTRATION

Since they are based on the statistics of corresponding pixels, the class of ACD algorithms described above
depends critically on accurate image registration, which cannot, in practice, be expected to be perfect, given the
limitations of registation algorithms. The following simple scenario provides a motivation for our algorithm for
reducing the sensitivity of ACD algorithms to registation errors.

In an image pair, consider a pixel x, in the first image, and a small window, containing pixels y,,, about the
corresponding pixel, yg, in the second image. If x is a true anomalous change consisting of an object not present
in the corresponding position in the second image, then all joint vectors [xTyl]T are likely to have a large
anomalousness measure (see Fig. 1). Conversely, if x does not represent a true anomalous change, but [x7yZ]7
has a large anomalousness measure due to misregistration, we can expect that some joint vectors [xTyl]T will
have a low anomalousness measure if the window is large enough to encompass the misregistration (see Fig. 2).

2.1. Asymmetric Algorithm

Motivated by this argument, we previously proposed? the following misregistration compensation scheme: For
each pixel in x, consider a window about the corresponding pixel in «y, and find the pixel within this window that
gives the lowest anomalousness when paired with the pixel in x (see Fig. 3). Take that pixel as the misregistration
compensated pixel value.

We define the window by offset vectors wj, and w,, the simplest example being a 3 x 3 window about the
central pixel

wp | |0 0 0 -1 -1 -1 1 11
w, | |0 -11 -1 0 1 -10 1] "
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Figure 1. Real anomalies: pixel x in image x has content not present in the window about the registered pixel, yo in
image v, and all pairs [x”y:]” have high anomalousness.
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Figure 2. Misregistration anomalies: pixel x in image x has different content from registered pixel, yo in image -, but
pixel y4 in the window about y( has similar content to x, so that the pair [xTyZ]T has low anomalousness.

Algorithm 1 Asymmetric Local Co-Registration Adjustment algorithm
Compute @ for the image pair x and =
for all pixel indices k,[ do
for all window vector indices m do
Set ' =k +wp, and I! =1+ wy,

Set AkJ,m = |: X%}l '}’Z;/JI :| Q |: Xk’l :|
Y

end for
Set Ay, = min,, Ak m
end for




Figure 3. Construction of a set of joint vectors from a single pixel in image x and all pixels within a window about the
corresponding pixel in image ~.

which we shall refer to as an r = 1 (i.e. radius 1) window, with » = 2 denoting a 4 x 4 window, and so forth.
The local co-registration adjustment (LCRA) procedure is defined in Algorithm 1.

An equivalent but more efficient implementation is to apply a shift to « for each relative position in the
chosen window and then to compute an anomalousness map for this image pair (see Fig. 4), as described in
Algorithm 2.

Algorithm 2 Asymmetric Local Co-Registration Adjustment algorithm (more efficient implementation)
Compute @ for the image pair x and =
for all window vector indices m do
Construct «y,, by applying shift (Wp, ,, Wym) to
for all pixel indices k,! do

Set Ay i = [ XZ,Z ’7%,1@1 }Q[ Akt ]
Ykl

end for
end for
for all pixel indices k,[ do
Set Ak,l = min,, Am7k7l
end for

The offset w,,, that minimizes Ay ; ., is naturally interpreted as the misregistration at the point k,! in the
image. We do not, however, treat it as an accurate estimator of misregistration per se; instead we interpret
it more loosely as a way to compensate for the misregistration. Nevertheless, given the mutual information
interpretation of the HACD anomalousness measure, as in (1), it is interesting to note the strong similarity
between the approach proposed here for reducing the sensitivity of ACD algorithms to registration errors, and
the well known mutual information based registration algorithms.!'~13

In the above algorithms covariance @) is computed once and then applied for every shifted image. A plausible
alternative is to recompute @ for every x and shifted 4 image pair, but this turns out to be a bad idea: (i) it
effectively (and incorrectly) assumes that the same fixed shift is applied over the entire image, (ii) it results in
differences of normalization between the resulting anomalousness maps, and (iii) it works poorly in practice.

2.2. Symmetric Algorithm

The motivation for the LCRA algorithm is based on a scenario in which the anomalous change occurs in the
first image, x, of the pair, and this asymmetry carries through to the resulting algorithm. In particular, when
the anomalous change is a pixel in the second image, 7, it may elude detection. This is because it is always part
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Figure 5. Symmetric version of the LCRA algorithm illustrated in Fig. 3. At each pixel, the minimum anomalousness
pair is selected in each direction (i.e. image x to 7, and image v to x) and the final anomalousness value is the maximum
of these two minima.

of a window of pixels, and its neighbors will be chosen as the registration-adjusted matches for the pixels in x.
Note, however, that while a true anomalous change will give either a high or low anomalousness depending on
the direction of minimization (i.e. x to 7, or vice versa), a spurious anomalous change due to misregistration
is symmetric, in that similar minimum anomalousness should be obtained independent of the direction of min-
imization. This observation suggests the Symmetric LCRA algorithm, in which minimization is performed in
both directions, and the maximum of the resulting minima is selected as the final result, as illustrated in Fig. 5.

The symmetric algorithm, like the original asymmetric version, is more efficiently implemented in terms of
shifts applied to whole images, as in Algorithm 3.

2.3. Simulation Framework

Because anomalies are by definition rare, evaluating the utility of anomaly detection algorithms can be problem-
atic; anecdotal evidence has some value, but quantitative comparisons require an adequate supply of anomalies.
In the simulation framework proposed in Ref. [14], one can start with two images which are presumed to contain
pervasive differences but no anomalous changes.* We call these the base image and the normal change image

*Of course it is possible to generate these pervasive differences by simulation as well; where the anomalous change is
generated for a single pixel at a time, the pervasive difference is applied to the whole image at once.



Algorithm 3 Symmetric Local Co-Registration Adjustment algorithm (more efficient implementation)
Compute @ for the image pair x and ~
for all window vector indices m do
Construct x,,, by applying shift (W, Wy.m) to X
Construct =,, by applying shift (W, ;m, Wym) to
for all pixel indices k,[ do

Set Aomps = | Xowks Yhi ]Q{ Xl 1

Yl
Set Ay k1 = [ X;}F,l PYrTn,k,l }Q Xl
Ym,k,l
end for
end for

for all pixel indices k,[ do
Set Ay, = max{min,, Aom ks, ming A}
end for

(and they correspond to the v and x images, respectively). A third image, the anomalous change image, is
simulated by choosing a pixel in the normal change image, and replacing it with a randomly chosen pixel from
somewhere in the rest of the normal change image. The idea is that the pixel is not itself unusual, but in the
context of the corresponding pixel in the base image, it exhibits an unusual change. When purely spectral ACD
algorithms are employed, one can take a shortcut and produce an anomalous change image in which every pixel
constitutes an anomalous change — in this case, the anomalous change image is obtained from the normal change
image simply by scrambling its pixels. The anomalous change detection algorithm is “trained” (which is to say
that the quadratic coefficient matrix @ is computed) using the base-normal pair. Applying the algorithm, at
a given threshold, to the base-normal pair provides an estimate of the false alarm rate. Applying the same
algorithm at the same threshold to the base-anomalous pair, one can estimate the detection rate. By varying the
threshold, a receiver operator characteristic (ROC) can be generated: this provides detection rate as a function
of false alarm rate.

2.3.1. Evaluating LCRA algorithm with simulation framework

When spatial pre-processing is built into the ACD algorithm, the simulation framework requires additional
complexity.'® Because the LCRA algorithm incorporates spatial context, this additional complexity is necessary
here. It is possible to avoid this complexity for the specific case where the algorithm is asymmetrical, and the
anomalies are known to be on a particular image; that is the case we investigated in our earlier work.? But
that is a special case, and for the results presented here, we employed a more sophisticated (and more robust)
simulation framework.

This framework incorporates the same ideas used in other work on spatial processing for anomalous change
detection.'® We begin by introducing another image, the target mask, which is a binary image with spatially
isolated 1’s surrounded by 0’s. Anomalous changes are introduced only at locations in the image where the target
mask is 1. That is, the anomalous change image differs from the normal image only at those locations where
the target mask is 1. Those anomalous pixels are chosen at random from the rest of the image.

As before, we apply the algorithm at a given threshold to the base-normal pair to provide an estimate of
the false alarm rate.t We apply the same algorithm at the same threshold to the base-anomalous pair, but only
consider the pixels where the target mask is nonzero. This provides our estimate the detection rate.

Because the anomalous changes are spatially isolated, we can perform spatial processing without having the
individual anomalies interfere with each other. It is of course required that the distance between the anomalies
be larger than the diameter of the spatial processing window.

TWe avoid pixels near the edge of the image when we make this estimate, since the shifting introduces artifacts there.



Figure 6. False color AVIRIS'® hyperspectral image of the Florida coastline, from dataset £960323t01p02_r04_sc01.

For the asymmmetic LCRA algorithm, there are two cases. One in which the « image is shifted (as shown in
Fig. 3), and one in which the x image is shifted. If we know that the anomalies, if they are to appear, will appear
in the x image, the the approach illustrated in Fig. 3, and described in the asymmetric LCRA pseudocode (see
Section 2.1), is appropriate. But if a single-pixel anomaly were to appear in the 4 image, then the effect of the
min operator in Fig. 3 would be to effectively ignore the anomaly.

In our earlier work, we assumed that the changes were introduced in the x image and the algorithm was
evaluated with simulation framework that made the same assumption. But in practice, this means that the user
has to guess correctly which image harbors the anomaly. If the user guesses incorrectly, the asymmetric LCRA
can fail catastrophically. In the results presented here, we use the above simulation framework, but employ two
different asymmetric LCRA algorithms: one that guesses correctly which image has the anomalies (fwd), and
one that guesses incorrectly (rev). For the symmetric LCRA, the forward and reverse algorithms are identical.

3. RESULTS

We present ACD results for both simulated and real anomalous changes. In each case we evaluate the performance
of the LCRA algorithm in correcting (i) a simple shift of the entire image in the horizontal direction, and (ii)
a misregistration consisting of a random (non-integer) offset at each pixel, in both the horizontal and vertical
directions, with the offset vector field smoothed to reduce abrupt changes between adjacent pixels. All LCRA
and Symmetric LCRA (SLCRA) results are computed using HACD as the base ACD algorithm.

3.1. Hyperspectral data with simulated anomalous changes

A false color rendition of the AVIRIS (Airborne Visible/InfraRed Imaging Spectrometer!®) hyperspectral test
datat is displayed in Fig. 6. For these results, we distinguish between LCRA in the forward direction (“LCRA
(fwd)”), using the correct choice of image in which changes occur, and LCRA in the reverse direction (“LCRA
(rev)”), with the incorrect choice of image in which changes occur. Fig. 7 shows detection results for this data
with pervasive differences consisting of a uniform horizontal offset. In Fig. 7(a), “LCRA (fwd)” gives the best
performance, followed closely by Symmetric LCRA, and “LCRA (rev)” gives worse performance than unmodified
HACD. In Fig. 7(b), there is a large performance gap between SLCRA with » = 1, and SLCRA with » = 2 and
r = 3; this is consistent with the two-pixel misregistration there. Fig. 8 shows detection results for this data
with pervasive differences consisting of a smooth random misregistration. In Fig. 8(a), for which the maximum
misregistration radius was 1 pixel, LCRA in the reverse direction substantially reduces performance, while the
Symmetric LCRA has very similar performance to the LCRA in the forward direction. Good performance from
asymmetric LCRA requires that one know which image the anomalous change will appear; the symmetric LCRA
does not require this knowledge. In Fig. 8(b) there is a small performance difference for the three different
window radii, but the best performance is obtained with r = 2, corresponding to the magnitude of the actual
random misregistration applied.

fAVIRIS data is available from the Jet Propulsion Laboratory (JPL) and National Aeronautics and Space Adminis-
tration (NASA) website: http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Figure 7. Results using AVIRIS data with simulated anomalous changes and uniform horizontal misregistration: (a) one
pixel misregistration, comparing LCRA in both directions with SLCRA (all with » = 1), and (b) two pixel misregistration,
comparing SLCRA for r € {1,2,3}. In (a), the “LCRA (fwd)” curve is indistinguisable from the upper horizontal axis.
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Figure 8. Results using AVIRIS data with simulated anomalous changes and random misregistration: (a) radius one
misregistration, comparing LCRA in both directions with SLCRA (all with r = 1), and (b) radius two misregistration,
comparing SLCRA for r € {1,2,3}. In (a) the curves for “LCRA (fwd)” and “SLCRA” are indistinguishable.



3.2. Multispectral data with real anomalous changes

A pair of images of desktop clutter is used to compute performance results for real data. These images are
displayed in Fig. 9, with a circle surrounding the anomalous change, consisting of a sunflower seed which is rotated
in the second image. The pervasive changes consist of different lighting conditions, and a misregistration. In
Figs. 10 and 11 the “HACD (aligned)” curve provides reference performance for HACD with no misregistration.
For these results, since there is no clear notion of computing LCRA in the correct or incorrect direction, we
denote the two different directions by “LCRA(x,~)” and “LCRA(~,Xx)”. With the exception of Fig. 11(a), for
which the detection performance of all of the methods is similar, there are significant differences in performance
between “LCRA(x,~)” and “LCRA(~,x)”, and SLCRA exhibits superior or equal performance to the better of
the two.

Figure 9. Desktop clutter test image pair. Location of anomalous change indicated by white circle.

4. CONCLUSIONS

The LCRA algorithm is observed to significantly improve detection performance in the low false-alarm regime
(sometimes at the expense of performance in the high false-alarm regime) for misregistered data. These per-
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Figure 10. Desktop clutter detection results for uniform horizontal misregistration of (a) 1 pixel, and (b) 2 pixels. The
“HACD (aligned)” curve corresponds to no misregistration, and provides an upper bound on misregistration compensation
performance. LCRA and SLCRA curves were computed using a window size appropriate for the misregistration magnitude
(i.e. 7 =1 for a 1 pixel offset and r = 2 for a 2 pixel offset).
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Figure 11. Desktop clutter detection results for random misregistration of (a) radius 1, and (b) radius 2. The “HACD
(aligned)” curve corresponds to no misregistration, and provides an upper bound on misregistration compensation per-
formance. LCRA and SLCRA curves were computed using a window size appropriate for the misregistration magnitude
(i.e. r =1 for a radius 1 random offset and r = 2 for a radius 2 random offset).

formance improvements have been observed for both the simulation framework and real data. The Symmetric
LCRA algorithm gives additional performance improvements, over a wider range of false-alarm rates.

Future research will address a number of promising extensions to this approach, including: (i) iteratively ap-
plying the estimated registration adjustment, re-computing covariances, and re-computing the local co-registration
adjustment; (ii) generalizing the registration window to allow explicit adjustment for sub-pixel misregistrations;
and (iii) incorporating appropriate prior knowledge, such as smoothness, on the form of misregistration.
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